Answer:
The volume =[tex](\frac{13}{8})^3[/tex] [tex]feet^3[/tex] and Surface area is [tex]6(\frac{13}{8})^2[/tex] [tex]feet^2[/tex]
Step-by-step explanation:
Given:
The side of the cube = [tex]1\frac{5}{8}[/tex] feet
To Find:
volume = ?
surface area = ?
Solution:
Step 1: Finding the surface area of the cube shaped packing box
We know that the volume of the cube is
=> [tex]6a^2[/tex]
On Substituting the value
surface area of the box
=> [tex]6(1\frac{5}{8})[/tex]
=>[tex]6(\frac{8 + 5}{8})^2[/tex]
=>[tex]6(\frac{13}{8})^2[/tex] [tex]feet^2[/tex]
Step 1: Finding the volume of the cube shaped packing box
We know that the volume of the cube is
=>[tex](a)^3[/tex]
On Substituting the value
Volume of the box
=>[tex]( 1\frac{5}{8})^3[/tex]
=>[tex](\frac{8+5}{8})^3[/tex]
=>[tex](\frac{13}{8})^3[/tex] [tex]feet^3[/tex]