Help plz help plz GOD BLESS U AND UR GRADES
![Help plz help plz GOD BLESS U AND UR GRADES class=](https://us-static.z-dn.net/files/d35/3043ed9abaee858b95a5d5536b687419.png)
Answer:
[tex]y=(\frac{1}{3})^{x}[/tex] is decreasing exponential functions as [tex]0<\frac{1}{3} <1[/tex].
Step-by-step explanation:
Let
[tex]f(x)=a^{x}[/tex]
As exponentiation increase or decrease depends upon the base value.
So,
If
[tex]a>1, f(x)[/tex] [tex]is\:increasing[/tex]
and if
[tex]0<a<1, f(x)[/tex] [tex]is\:decreasing[/tex]
So,
Considering the given exponentiation function
[tex]y=(\frac{1}{3})^{x}[/tex]
As
[tex]0<\frac{1}{3} <1[/tex]
So, [tex]y=(\frac{1}{3})^{x}[/tex] is decreasing exponential functions.
In all other options, the value of base is greater than 1. i.e. [tex]a>1[/tex].
Therefore, [tex]y=(\frac{1}{3})^{x}[/tex] is decreasing exponential functions.
The graph of decreasing exponential function i.e. [tex]y=(\frac{1}{3})^{x}[/tex] is also attached.
Keywords: exponential function, decreasing exponential function
Learn more abut exponential function from brainly.com/question/10250999
#learnwithBrainly