Respuesta :

Answer:

[tex]y=(\frac{1}{3})^{x}[/tex] is decreasing exponential functions as [tex]0<\frac{1}{3} <1[/tex].

Step-by-step explanation:

Let

[tex]f(x)=a^{x}[/tex]

As exponentiation increase or decrease depends upon the base value.

So,

If

[tex]a>1, f(x)[/tex]  [tex]is\:increasing[/tex]          

and if

[tex]0<a<1, f(x)[/tex]  [tex]is\:decreasing[/tex]

So,

Considering the given exponentiation function

[tex]y=(\frac{1}{3})^{x}[/tex]

As

[tex]0<\frac{1}{3} <1[/tex]

So, [tex]y=(\frac{1}{3})^{x}[/tex] is decreasing exponential functions.

In all other options, the value of base is greater than 1. i.e. [tex]a>1[/tex].

Therefore, [tex]y=(\frac{1}{3})^{x}[/tex] is decreasing exponential functions.

The graph of decreasing exponential function i.e. [tex]y=(\frac{1}{3})^{x}[/tex] is also attached.

Keywords: exponential function, decreasing exponential function

Learn more abut exponential function from brainly.com/question/10250999

#learnwithBrainly

Ver imagen SaniShahbaz
ACCESS MORE