Respuesta :

Answer:

The nonzero vector orthogonal to the plane is <-9,-8,2>.

Step-by-step explanation:

Consider the given points are P=(0,0,1), Q=(−2,3,4), R=(−2,2,0).

[tex]\overrightarrow {PQ}=<-2-0,3-0,4-1>=<-2,3,3>[/tex]

[tex]\overrightarrow {PR}=<-2-0,2-0,0-1>=<-2,2,-1>[/tex]

The nonzero vector orthogonal to the plane through the points P,Q, and R is

[tex]\overrightarrow n=\overrightarrow {PQ}\times \overrightarrow {PR}[/tex]

[tex]\overrightarrow n=\det \begin{pmatrix}i&j&k\\ \:\:\:\:\:-2&3&3\\ \:\:\:\:\:-2&2&-1\end{pmatrix}[/tex]

Expand along row 1.

[tex]\overrightarrow n=i\det \begin{pmatrix}3&3\\ 2&-1\end{pmatrix}-j\det \begin{pmatrix}-2&3\\ -2&-1\end{pmatrix}+k\det \begin{pmatrix}-2&3\\ -2&2\end{pmatrix}[/tex]

[tex]\overrightarrow n=i(-9)-j(8)+k(2)[/tex]

[tex]\overrightarrow n=-9i-8j+2k[/tex]

[tex]\overrightarrow n=<-9,-8,2>[/tex]

Therefore, the nonzero vector orthogonal to the plane is <-9,-8,2>.

ACCESS MORE