Answer: 0.9544
Step-by-step explanation:
As per given have ,
Population mean : [tex]\mu=200[/tex]
Standard deviation : [tex]\sigma=50[/tex]
Sample size : n= 100
We assume that the population is normally distributed.
Let [tex]\overline{x}[/tex] be the sample mean.
Now , the probability that the sample mean will be within ±10 of the population mean will be :-
[tex]P(200-10<\overlien{x}<200+10)=P(190<x<210)[/tex]
[tex]P(\dfrac{190-200}{\dfrac{50}{\sqrt{100}}}<\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}<\dfrac{210-200}{\dfrac{50}{\sqrt{100}}})[/tex]
[tex]=P(\dfrac{-10}{\dfrac{50}{10}}<z<\dfrac{10}{\dfrac{50}{10}})\ \ [\because\ z=\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}][/tex]
[tex]=P(\dfrac{-10}{5}<z<\dfrac{10}{5})=P(-2<z<2) \\\\=2P(z<2)-1\ \ [\because\ P(-z<Z<z)=2P(Z<z)-1]\\\\=2(0.9772)-1\ \ [\text{[By z-table]}]\\\\=0.9544[/tex]
Hence, the required probability is 0.9544.