Answer:
a) The value of If(i)I = √2.
Step-by-step explanation:
Here the given function is f(x) = 1 - x
To Find: If(i)I
First;y, let us find the value of f(i).
Substituting x = i in f(x) , we get:
f(i) = 1- i
Now, The modulus value of a function P = A + B is written as :
[tex]IPI = IA+BI = \sqrt{A^2 + B^2}[/tex]
So, here calculating the value of If(i)I :
[tex]I1-iI = \sqrt{(1)^2 + (-1)^2} = \sqrt{1+ (1)} = \sqrt {1+1} = \sqrt{2}\\\implies I1-iI = \sqrt{2}[/tex]
⇒ I1-1I = √2
or, If(i)I =√2
Hence, the value of If(i)I for f(x) = 1 -x is√2.