Answer
given,
diameter,d₁ = 7.5 cm
d₂ = 4.5 cm
P₁ = 32 kPa
P₂ = 25 kPa
Assuming, we have calculation of flow in the pipe
using continuity equation
A₁ v₁ = A₂ v₂
π r₁² v₁ = π r₂² v₂
[tex]v_1= \dfrac{r_2^2}{r_1^2} v_2[/tex]
[tex]v_1= \dfrac{2.25^2}{3.75^2} v_2[/tex]
[tex]v_1= 0.36 v_2[/tex]
Applying Bernoulli's equation
[tex]\Delta P = \dfrac{1}{2}\rho (v_2^2-v_1^2)[/tex]
[tex]P_1-P_2 = \dfrac{1}{2}\rho (v_2^2-(0.36 v_2)^2)[/tex]
[tex]32-25 = \dfrac{1}{2}1000\times v_2^2 (1 - 0.1269)[/tex]
[tex]v_2=\sqrt{\dfrac{2\times 7\times 10^3}{1000\times (0.8704)}}[/tex]
[tex]v_2=\sqrt{16.084}[/tex]
v₂ = 4.01 m/s
fluid flow rate
Q = A₂ V₂
Q = π (0.0225)² x 4.01
Q = 6.38 x 10⁻³ m³/s
flow in the pipe is equal to 6.38 x 10⁻³ m³/s