Respuesta :
Answer:
[tex] \bar X_B = \frac{\sum_{i=1}^5 X_i}{5} =\frac{500+200+250+275+300}{5}=\frac{1525}{5}=305[/tex]
[tex] s_B = \sqrt{\frac{\sum_{i=1}^5 (X_i-\bar X)^2}{n-1}}=\sqrt{\frac{(500-305)^2 +(200-305)^2 +(250-305)^2 +(275-305)^2 +(300-305)^2)}{5-1}} = 115.108[/tex]
[tex] \bar X_A = \frac{\sum_{i=1}^5 X_i}{5} =\frac{-500+200+250+275+300}{5}=\frac{525}{5}=105[/tex]
[tex] s_A = \sqrt{\frac{\sum_{i=1}^5 (X_i-\bar X)^2}{n-1}}=\sqrt{\frac{(-500-105)^2 +(200-105)^2 +(250-105)^2 +(275-105)^2 +(300-105)^2)}{5-1}} = 340.221[/tex]
The absolute difference is:
[tex] Abs = |340.221-115.108|= 225.113[/tex]
If we find the % of change respect the before case we have this:
[tex] \% Change = \frac{|340.221-115.108|}{115.108} *100 = 195.57\%[/tex]
So then is a big change.
Step-by-step explanation:
The subindex B is for the before case and the subindex A is for the after case
Before case (with 500)
For this case we have the following dataset:
500 200 250 275 300
We can calculate the mean with the following formula:
[tex] \bar X_B = \frac{\sum_{i=1}^5 X_i}{5} =\frac{500+200+250+275+300}{5}=\frac{1525}{5}=305[/tex]
And the sample deviation with the following formula:
[tex] s_B = \sqrt{\frac{\sum_{i=1}^5 (X_i-\bar X)^2}{n-1}}=\sqrt{\frac{(500-305)^2 +(200-305)^2 +(250-305)^2 +(275-305)^2 +(300-305)^2)}{5-1}} = 115.108[/tex]
After case (With -500 instead of 500)
For this case we have the following dataset:
-500 200 250 275 300
We can calculate the mean with the following formula:
[tex] \bar X_A = \frac{\sum_{i=1}^5 X_i}{5} =\frac{-500+200+250+275+300}{5}=\frac{525}{5}=105[/tex]
And the sample deviation with the following formula:
[tex] s_A = \sqrt{\frac{\sum_{i=1}^5 (X_i-\bar X)^2}{n-1}}=\sqrt{\frac{(-500-105)^2 +(200-105)^2 +(250-105)^2 +(275-105)^2 +(300-105)^2)}{5-1}} = 340.221[/tex]
And as we can see we have a significant change between the two values for the two cases.
The absolute difference is:
[tex] Abs = |340.221-115.108|= 225.113[/tex]
If we find the % of change respect the before case we have this:
[tex] \% Change = \frac{|340.221-115.108|}{115.108} *100 = 195.57\%[/tex]
So then is a big change.