A 5kg object moving horizontally at 3m/s collides with a stationary 3kg object. After the collision, the 5kg object is deflected 30 degrees from the horizontal and the 3kg object is deflected 315 degrees from the horizontal. Determine the velocity of each ball after the collision.

Respuesta :

Answer:

The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.

Explanation:

Given that,

Mass of object = 5 kg

Speed = 3 m/s

Mass of stationary object = 3 kg

Moving object deflected  = 30°

Stationary object deflected = 31°

We need to calculate the velocity of each ball after collision

Using conservation of momentum

Along x-axis

[tex]m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}\cos\theta+m_{2}v_{2}\cos\theta[/tex]

Put the value into the fomrula

[tex]5\times3+0=5\times v_{1}\cos30+3\times v_{2}\cos45[/tex]

[tex]15=5v_{1}\times\dfrac{\sqrt{3}}{2}+3v_{2}\times\dfrac{1}{\sqrt{2}}[/tex]

[tex]15=\dfrac{5\sqrt{3}}{2}v_{1}+\dfrac{3}{\sqrt{2}}v_{2}[/tex]....(I)

Along y -axis

[tex]m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}\sin\theta+m_{2}v_{2}\sin\theta[/tex]

Put the value into the formula

[tex]0+0=5\times v_{1}\sin30-3\times v_{2}\sin45[/tex]

[tex]\dfrac{5}{2}v_{1}-\dfrac{3}{\sqrt{2}}v_{2}=0[/tex]...(II)

From equation (I) and (II)

[tex]v_{1}=\dfrac{15\times2}{5\sqrt{3}+5}[/tex]

[tex]v_{1}=2.19\ m/s[/tex]

Put the value of v₁ in equation (I)

[tex]\dfrac{5}{2}\times2.19-\dfrac{3}{\sqrt{2}}v_{2}=0[/tex]

[tex]v_{2}=\dfrac{5.475\times\sqrt{2}}{3}[/tex]

[tex]v_{2}=2.58\ m/s[/tex]

Hence, The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.