Answer:
[tex] a= \frac{5.8 \frac{m}{s}}{0.9 s}= 6.44 \frac{m}{s^2}[/tex]
And if we use two significant figures we have this [tex] a \approx 6.5 \frac{m}{s^2}[/tex]
Step-by-step explanation:
For this case we know that the acceleration is defined by this formula:
[tex] a = \frac{\Delta v}{\Delta t}[/tex]
Or equivalently:
[tex] a= \frac{v_f -v_i}{t_f -t_i}[/tex]
From the info given we have this:
[tex] \Delta v = v_f -v_i = 5.8 \frac{m}{s}[/tex]
[tex] \Delta t = t_f -t_i = 0.9 s[/tex]
And if we replace in the formula we got:
[tex] a= \frac{5.8 \frac{m}{s}}{0.9 s}= 6.44 \frac{m}{s^2}[/tex]
And if we use two significant figures we have this [tex] a \approx 6.5 \frac{m}{s^2}[/tex]