Answer:
[tex]\dfrac{v_2}{v_1}=2[/tex]
Explanation:
[tex]k_b[/tex] = Boltzmann constant = [tex]1.38\times 10^{-23}\ J/K[/tex]
T = Temperature
m = Mass of the molecules
The RMS velocity of molecules in a gas is given by
[tex]v_{rms}=\sqrt{\dfrac{3k_bT}{m}}[/tex]
It can be seen that RMS velocty is proportional to temperature
[tex]v_{rms}=\sqrt{T}[/tex]
[tex]\dfrac{v_2}{v_1}=\sqrt{\dfrac{T_2}{T_1}}\\\Rightarrow \dfrac{v_2}{v_1}=\sqrt{\dfrac{1312}{328}}\\\Rightarrow \dfrac{v_2}{v_1}=2[/tex]
The ratio of the velocities is [tex]\dfrac{v_2}{v_1}=2[/tex]