Answer:
The coin roll up to 11.57 cm at 30° incline plane.
Explanation:
Given that,
Diameter = 3.00 cm
Angle = 30.0 °
Angular speed = 60.0 rad/s
We need to calculate the length
Using conservation of energy
[tex]\dfrac{1}{2}mv^2+\dfrac{1}{2}I\omega^2=mgh[/tex]
[tex]\dfrac{1}{2}mr^2\omega^2+\dfrac{1}{2}\times(0.4mr^2)\times\omega^2=mgl\sin\theta[/tex]
Put the value into the formula
[tex]\dfrac{1}{2}\times(1.5\times10^{-2})^2\times(60.0)^2+\dfrac{1}{2}\times0.4\times(1.5\times10^{-2})^2\times(60.0)^2=9.8\times l\sin30[/tex]
[tex]l\sin30=\dfrac{0.567}{9.8}[/tex]
[tex]l=2\times\dfrac{0.567}{9.8}[/tex]
[tex]l=0.1157\ m[/tex]
Hence, The coin roll up to 11.57 cm at 30° incline plane.