Respuesta :

Answer:

[tex]\frac{64}{q^{4}}[/tex]

or

[tex]64q^{-4}[/tex]

Step-by-step explanation:

Remember the properties

Product rules

[tex]a^{n} a^{m}=a^{n+m}[/tex]

Power rules

[tex](a^{n})^{m}=a^{n*m}[/tex]

we have

[tex](-2p^{-5}q4p^{5}q^{-3})^{2}[/tex]

Applying the product rules

[tex](-2(4)p^{-5+5}q^{-3+1})^{2}[/tex]

[tex](-8p^{0}q^{-2})^{2}[/tex]

[tex](-8q^{-2})^{2}[/tex]

Applying the power rules

[tex]64q^{-4}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^{-b}=\frac{1}{a^b}[/tex]

[tex]64q^{-4}=\frac{64}{q^{4}}[/tex]