Answer:
120.575 kJ is the activation energy for the souring process.
Explanation:
The formula for an activation energy is given as:
[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_1[/tex] = rate constant at [tex]25^oC[/tex] = [tex]40k[/tex]
[tex]K_2[/tex] = rate constant at [tex]4^oC[/tex] = [tex]k[/tex]
[tex]Ea[/tex] = activation energy for the reaction = ?
R = gas constant = 8.314 J/mole.K
[tex]T_1[/tex] = initial temperature = [tex]25^oC=273+25=298 K[/tex]
[tex]T_2[/tex] = final temperature = [tex]4^oC=273+4=277 K[/tex]
Now put all the given values in this formula, we get:l
[tex]\log (\frac{k}{40k})=\frac{Ea}{2.303\times 8.314 J/mol K}[\frac{1}{298K}-\frac{1}{277 K}][/tex]
[tex]E_a=120,575.61J=120.575 kJ[/tex]
120.575 kJ is the activation energy for the souring process.