Respuesta :
Answer: 4.99×10²³ photons
Explanation: The energy of a photon is given as
E= hf
h= Planck constant = 6.626×10^-34Js
f= frequency = c/x
C= speed of light = 3×10^8 m/s
x= wavelength= 525nm= 525×10^-9
E= hc/x
E= 6.626×10^-34 × 3×10^8 m/s /( 525×10^-9)
E= 3.79×10^−19 J/ Photon
E= 3.79×10^−22KJ/Photon
189KJ/3.79×10^−22KJ/photon=
4.99×10²³photons.
Therefore the number of photons is
4.99×10²³photons.
There are 4.99 × 10²³ photons contained in a flash of green light (525 nm) that contains 189 kJ of energy.
First, we will calculate the energy (E) of each photon using the Planck-Einstein's relation.
[tex]E = \frac{h \times c}{\lambda}[/tex]
where,
- h: Planck's constant (6.63 × 10⁻³⁴ J.s)
- c: speed of light (3.00 × 10⁸ m/s)
- λ: wavelength of the photon (525 nm = 525 × 10⁻⁹ m)
[tex]E = \frac{h \times c}{\lambda} = \frac{6.63 \times 10^{-34}J.s \times 3.00 \times 10^{8}m/s }{525 \times 10^{-9} m } = 3.79 \times 10^{-19 } J[/tex]
Each photon has an energy of 3.79 × 10⁻¹⁹ J. The number of photons that amount to 189 kJ (189 × 10³ J) of energy are:
[tex]189 \times 10^{3} J \times \frac{1photon}{3.79 \times 10^{-19 } J} = 4.99 \times 10^{23} photon[/tex]
There are 4.99 × 10²³ photons contained in a flash of green light (525 nm) that contains 189 kJ of energy.
You can learn more about photons here: https://brainly.com/question/23180082
![Ver imagen dsdrajlin](https://us-static.z-dn.net/files/dfc/e93f137f6f410c13f26ac13436b3fcbc.png)