Please help!
Which pair of functions is not a pair of inverse functions?

A. f(x)= x+1/6 and g(x)= 6x-1

B. f(x)= x-4/19 and g(x)= 19x+4

C. f(x)= x5 and g(x)= 5√x

D. f(x)= x/x + 20 and g(x)= 20x/x-1
Thank you!

Respuesta :

Answer:

Option in D is not an inverse function.

Step-by-step explanation:

A. Say, [tex]y = f(x) = \frac{x + 1}{6}[/tex]

⇒ 6y = x + 1

⇒ x = 6y - 1

Here, g(x) = 6x - 1, if g(x) is the inverse function of f(x).

B. Let us assume, [tex]y = f(x) = \frac{x - 4}{19}[/tex]

⇒ 19y = x - 4

x = 19x + 4

If g(x) is the inverse function of f(x), then, g(x) = 19x + 4

C. Let [tex]y = f(x) = x^{5}[/tex]

⇒ [tex]x = \sqrt[5]{y}[/tex]

Here, [tex]g(x) = \sqrt[5]{x}[/tex], if g(x) is the inverse function of f(x).

D. Let [tex]y = f(x) = \frac{x}{x + 20}[/tex]

⇒ yx + 20y = x

⇒ x(y - 1) = - 20y

⇒ [tex]x = \frac{- 20y}{y - 1}[/tex]

Now, if g(x) is the inverse function of f(x), then, [tex]g(x) = \frac{- 20x}{x - 1}[/tex]

Therefore, option in D is not an inverse function. (Answer)

D. f(x)= x/x + 20 and g(x)= 20x/x-1

RELAXING NOICE
Relax