Respuesta :
Answer:
Option in D is not an inverse function.
Step-by-step explanation:
A. Say, [tex]y = f(x) = \frac{x + 1}{6}[/tex]
⇒ 6y = x + 1
⇒ x = 6y - 1
Here, g(x) = 6x - 1, if g(x) is the inverse function of f(x).
B. Let us assume, [tex]y = f(x) = \frac{x - 4}{19}[/tex]
⇒ 19y = x - 4
⇒ x = 19x + 4
If g(x) is the inverse function of f(x), then, g(x) = 19x + 4
C. Let [tex]y = f(x) = x^{5}[/tex]
⇒ [tex]x = \sqrt[5]{y}[/tex]
Here, [tex]g(x) = \sqrt[5]{x}[/tex], if g(x) is the inverse function of f(x).
D. Let [tex]y = f(x) = \frac{x}{x + 20}[/tex]
⇒ yx + 20y = x
⇒ x(y - 1) = - 20y
⇒ [tex]x = \frac{- 20y}{y - 1}[/tex]
Now, if g(x) is the inverse function of f(x), then, [tex]g(x) = \frac{- 20x}{x - 1}[/tex]
Therefore, option in D is not an inverse function. (Answer)
