Answer:
Option a) [5.567, 5.633]
Step-by-step explanation:
We are given the following in the question:
Sample mean, [tex]\bar{x}[/tex] = 5.6 feet
Sample size, n = 27
Alpha, α = 0.10
Sample standard deviation, s = 0 .1 feet
90% Confidence interval:
[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]t_{critical}\text{ at degree of freedom 26 and}~\alpha_{0.10} = \pm 1.7056[/tex]
[tex]5.6 \pm 1.7056(\displaystyle\frac{0.1}{\sqrt{27}} ) = 5.6 \pm 0.0328 = (5.5672 ,5.6328) \approx (5.567,5.633)[/tex]
Option a) [5.567, 5.633]