Respuesta :
Answer:
a) [tex] T =0.55 s[/tex]
b) [tex] f =\frac{1}{T}=\frac{1}{0.55 s}=1.82 Hs[/tex]
c) [tex] w = 2 \pi *(1.82 Hz) =11.424 \frac{rad}{s}[/tex]
d) [tex] k = m (2\pi f)^2 = m w^2 = 0.5 kg * (11.424 rad/s)^2 =65.254 \frac{N}{m}[/tex]
e) [tex] v_{max}= Aw= 0.47 m * 11.424 \frac{rad}{s}=5.37 \frac{m}{s}[/tex]
f) [tex] F_{max}= A m w^2 = 0.47 m *0.5 kg* (11.424 \frac{rad}{s})^2 =30.67 N[/tex]
Explanation:
Part a
For this case we know that the mass repeat its motion every 0.550 s. And that's the definition of period so for this case [tex] T =0.55 s[/tex]
Part b
By definition the frecuency is the inverse of the period so we have this:
[tex] f =\frac{1}{T}=\frac{1}{0.55 s}=1.82 Hs[/tex]
Part c
The angular fecuency is defined with the following formula:
[tex] w = 2\pi f [/tex]
And since we have the frequency we can replace:
[tex] w = 2 \pi *(1.82 Hz) =11.424 \frac{rad}{s}[/tex]
Part d
For this case we know that the period is given by:
[tex] T = 2\pi \sqrt{\frac{m}{k}}[/tex]
And if we solve for k we have this:
[tex] (\frac{T}{2\pi})^2 = \frac{m}{k}[/tex]
[tex] k = m (\frac{2\pi}{T})^2[/tex]
And since [tex] f=\frac{1}{T}[/tex] we can rewrite this expression like this:
[tex] k = m (2\pi f)^2 = m w^2 = 0.5 kg * (11.424 rad/s)^2 =65.254 \frac{N}{m}[/tex]
Part e
The maximum speed for an oscillator is given by this formula:
[tex] v_{max}= Aw= 0.47 m * 11.424 \frac{rad}{s}=5.37 \frac{m}{s}[/tex]
Part f
The maximum force is given by this formula:
[tex] F_{max} = ma_{max}[/tex]
And the [tex] a_{max}= Aw^2[/tex] because the acceleration is the derivate of the velocity, so then we have:
[tex] F_{max}= A m w^2 = 0.47 m *0.5 kg* (11.424 \frac{rad}{s})^2 =30.67 N[/tex]