Answer:
see explanation
Step-by-step explanation:
Given
[tex]\frac{6(2a-4c)-6(6a-4b)+3(4b-8c)}{4}[/tex]
Distribute the 3 parenthesis on the numerator
= [tex]\frac{12a-24c-36a+24b+12b-24c}{4}[/tex]
Collect like terms on the numerator
= [tex]\frac{-24a+36b-48c}{4}[/tex]
Divide each of the terms on the numerator by 4
= [tex]\frac{-24a}{4}[/tex] + [tex]\frac{36b}{4}[/tex] + [tex]\frac{-48c}{4}[/tex]
= - 6a + 9b - 12c ← factor out - 3 from each term
= - 3(2a - 3b + 4c)
Compare with
X(2a + Bb + Cc) to obtain
X = - 3, B = - 3, C = 4