Respuesta :
Answer:
42042 number of ways can the committee be formed.
Step-by-step explanation:
Given: There are 8 Faculty member and 15 students eligible to serve on the committee.
Need to form a committee of 4 faculty and 5 students.
Now, finding the number ways that committee to be formed.
lets use the combination formula to find combination of faculty and students.
[tex]_{r}^{n}\textrm{C}= \frac{n!}{r!(n-r)!}[/tex]
Subtituting the value in the formula
⇒ [tex]_{4}^{8}\textrm{C}\times _{5}^{15}\textrm{C}= \frac{8!}{4!(8-4)!} \times \frac{15!}{5!(15-5)!}[/tex]
⇒[tex]_{4}^{8}\textrm{C}\times _{5}^{15}\textrm{C}= \frac{8\times 7\times 6\times 5\times 4!}{4!(4)!} \times \frac{15\times 14\times 13\times 12\times 11\times 10!}{5!(10)!}[/tex]
⇒[tex]_{4}^{8}\textrm{C}\times _{5}^{15}\textrm{C}= \frac{8\times 7\times 6}{4\times 3\times 2\times 1} \times \frac{15\times 14\times 13\times 12\times 11}{5\times 4\times 3\times 2\times 1}[/tex]
⇒ [tex]_{4}^{8}\textrm{C}\times _{5}^{15}\textrm{C}= 14\times 3003[/tex]
⇒[tex]_{4}^{8}\textrm{C}\times _{5}^{15}\textrm{C}= 42042[/tex]
∴ 42042 number of ways can the committee be formed.