Respuesta :

Answer:

[tex]9 x+2 y +43 =0[/tex]

Step-by-step explanation:

Step 1:-

Given line -2 x +9 y = -39 can be written as

[tex]9 y = -39 +2 x[/tex]

[tex]y = \frac{2 x}{9} - \frac{39}{9}[/tex]...........(1)

comparing above equation y=m x+c

here [tex]m = \frac{2 }{9} and y-intercept  is c = \frac{-39}{9}[/tex]

Step 2:-

Perpendicular line condition:-

two lines are perpendicular then their slopes are reciprocal

[tex]m_{2} = \frac{-1}{m_{2} }[/tex]

[tex]m_{1}m_{2} = -1[/tex]

[tex][tex]m_{2} = \frac{-1}{\frac{2}{9}  }[/tex][/tex]

slope of the perpendicular line is

[tex]m_{2} = \frac{-9}{2}[/tex]

Step 3:-

The equation of the perpendicular line is

[tex]y-y_{1} = \frac{-1}{m_{1} } (x-x_{1})[/tex]

[tex]y-(-8)=\frac{-9}{2} (x+3)[/tex]

[tex]2 y +16 = -9 x -27[/tex]

simplify [tex]9 x+2 y +16+27=0[/tex]

Final answer :-

The equation of the perpendicular line is

[tex]9 x+2 y+43=0[/tex]

ACCESS MORE