Answer:
[tex]9 x+2 y +43 =0[/tex]
Step-by-step explanation:
Step 1:-
Given line -2 x +9 y = -39 can be written as
[tex]9 y = -39 +2 x[/tex]
[tex]y = \frac{2 x}{9} - \frac{39}{9}[/tex]...........(1)
comparing above equation y=m x+c
here [tex]m = \frac{2 }{9} and y-intercept is c = \frac{-39}{9}[/tex]
Step 2:-
Perpendicular line condition:-
two lines are perpendicular then their slopes are reciprocal
[tex]m_{2} = \frac{-1}{m_{2} }[/tex]
[tex]m_{1}m_{2} = -1[/tex]
[tex][tex]m_{2} = \frac{-1}{\frac{2}{9} }[/tex][/tex]
slope of the perpendicular line is
[tex]m_{2} = \frac{-9}{2}[/tex]
Step 3:-
The equation of the perpendicular line is
[tex]y-y_{1} = \frac{-1}{m_{1} } (x-x_{1})[/tex]
[tex]y-(-8)=\frac{-9}{2} (x+3)[/tex]
[tex]2 y +16 = -9 x -27[/tex]
simplify [tex]9 x+2 y +16+27=0[/tex]
Final answer :-
The equation of the perpendicular line is
[tex]9 x+2 y+43=0[/tex]