Respuesta :

Answer:

The option 1) i.e. (2, -6) is true.

Step-by-step explanation:

Considering the function

[tex]f(x) = 3x^{2} - 12x + 6[/tex]

[tex]\mathrm{Write}\:3x^2-12x+6\:\mathrm{in\:the\:form:\:\:}x^2+2ax+a^2[/tex]

= [tex]3x^{2} -12x+6[/tex]

[tex]\mathrm{Factor\:out\:}3[/tex]

= [tex]3(x^{2} -4x)+6[/tex]

Completing the square:

[tex]=3\left(x^2-4x+2+\left(-2\right)^2-\left(-2\right)^2\right)[/tex]

As

[tex]x^2+2ax+a^2=\left(x+a\right)^2[/tex]

[tex]x^2-4x+\left(-2\right)^2=\left(x-2\right)^2[/tex]

[tex]\mathrm{Complete\:the\:square}[/tex]

[tex]=3\left(\left(x-2\right)^2+2-\left(-2\right)^2\right)[/tex]

[tex]=3\left(x-2\right)^2-6[/tex]

The vertex form of a quadratic function  [tex]f(x) = a(x-h)^{2} + k[/tex], where (h, k) be the vertex of the parabola.

The vertex form of the equation is: [tex]f(x)=3\left(x-2\right)^2-6[/tex]

If we may compare this equation with the general vertex form, we will find that h = 2 and k = -6, so the vertex is at (2, -6).

Therefore, option 1) i.e. (2, -6) is true.

Keywords: completing the square, function

Learn more about completing the square from brainly.com/question/12752635

#learnwithBrainly

ACCESS MORE