Respuesta :

Answer:

Therefore

[tex]\sin (a+b) =-\dfrac{23}{65}[/tex]

Step-by-step explanation:

Given:

[tex]\sin a =\dfrac{12}{13}\\\\\cos b=-\dfrac{4}{5}[/tex]

To Find:

[tex]\sin (a+b)= ?[/tex]

Solution:

Using identity,

[tex]\sin^{2}a+\cos^{2}a=1[/tex]

Now Substitute Sin a we get

As 'a' is in Second Quadrant Cos a is Negative

Similarly,

[tex]\sin^{2}b+\cos^{2}b=1[/tex]

Now Substitute Cos b we get

[tex](\dfrac{-4}{5})^{2}+\sin^{2}b=1\\\\\sin^{2}b=1-\dfrac{16}{25}=\dfrac{9}{25}\\\\\sin b=\pm\sqrt{\dfrac{9}{25}}\\\\\sin b=-\dfrac{3}{5}[/tex]

As 'b' is in Third Quadrant Sin b is Negative

Now Using Identity

[tex]\sin (a+b) = \sin a.\cos b + \cos a.\sin b[/tex]

Substituting the values we get

[tex]\sin (a+b) =\dfrac{12}{13}\times -\dfrac{4}{5}+\dfrac{-5}{13}\times -\dfrac{3}{5}[/tex]

[tex]\sin (a+b) =\dfrac{-48+15}{13\times 5}[/tex]

[tex]\sin (a+b) =-\dfrac{23}{65}[/tex]

Therefore

[tex]\sin (a+b) =-\dfrac{23}{65}[/tex]

ACCESS MORE