Answer:
The ball impact velocity i.e(velocity right before landing) is 6.359 m/s
Explanation:
This problem is related to parabolic motion and can be solved by the following equations:
[tex]x=V_{o}cos \theta t[/tex]----------------------(1)
[tex]y=y_{o}+V_{o} sin \theta t - \frac{1}{2}gt^{2}[/tex]---------(2)
[tex]V=V_{o}-gt[/tex] ----------------------- (3)
Where:
x = m is the horizontal distance travelled by the golf ball
[tex]V_{o}[/tex] is the golf ball's initial velocity
[tex]\theta=0\°[/tex] is the angle (it was a horizontal shot)
t is the time
y is the final height of the ball
[tex]y_{o}[/tex] is the initial height of the ball
g is the acceleration due gravity
V is the final velocity of the ball
Step 1: finding t
Let use the equation(2)
[tex]t=\sqrt{\frac{2 y_{o}}{g}}[/tex]
[tex]t=\sqrt{\frac{2 (12.5 m)}{9.8 m/s^{2}}}[/tex]
[tex]t=1.597[/tex]s
Substituting (6) in (1):
[tex]67.1 =V_{o} cos(0\°) 1.597[/tex]-------------------(4)
Step 2: Finding [tex]V_{o}[/tex]:
From equation(4)
[tex]67.1 =V_{o}(1) 1.597[/tex]
[tex]V_0 = \frac{6.71}{1.597}[/tex]
[tex]V_{o}=42.01[/tex] m/s (8)
Substituting [tex]V_{o}[/tex] in (3):
[tex]V=42.01 -(9.8)(1.597)[/tex]
v =42 .01 - 15.3566
V=26.359 m/s