contestada

Solve this equation using all three methods 4x^ = 9

1.Factoring, 2. Complete the square, and 3. Using the Quadratic formula.

Respuesta :

Answer:

[tex]x=-\frac{3}{2}, x=\frac{3}{2}[/tex]

Step-by-step explanation:

(1)       To solve by factoring,

Given equation: [tex]4 x^{2}=9[/tex]

Subtract 9 from both sides of the equation.

[tex]\begin{aligned}&4 x^{2}-9=9-9\\&4 x^{2}-9=0\\&(2 x)^{2}-3^{2}=0\\&(2 x-3)(2 x+3)=0\end{aligned}[/tex]

Using zero factor principle, [tex]2 x-3=0,2 x+3=0[/tex]

The solutions are [tex]x=-\frac{3}{2}, x=\frac{3}{2}[/tex].

(2) To solve by complete the square ,

Given [tex]4 x^{2}=9[/tex]

Divide both sides of the equation by 4.  

[tex]\frac{4 x^{2}}{4}=\frac{9}{4}[/tex]  

[tex]\Rightarrow x^{2}=\frac{9}{4}[/tex]  

Square root on both sides.

[tex]$\Rightarrow x=\pm \frac{3}{2}$[/tex]

[tex]x=-\frac{3}{2}, x=\frac{3}{2}[/tex]

(3) To solve by quadratic formula,  

[tex]$4 x^{2}-9=0$[/tex]

Here, a = 4, b = 0, c = –9

Quadratic formula, [tex]$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$[/tex]

[tex]x=\frac{-0 \pm \sqrt{0^{2}-4 \times 4 \times(-9)}}{2 \times 4}[/tex]

[tex]\begin{aligned}&\Rightarrow x=\frac{\pm \sqrt{144}}{8}\\&\Rightarrow x=\pm \frac{3}{2}\\&\Rightarrow x=\frac{3}{2}, x=-\frac{3}{2}\end{aligned}[/tex]

ACCESS MORE