Answer:
[tex]Remaining\ containers=\frac{y}{2}\\\\Where\ y\ is\ the\ number\ of\ large\ containers.[/tex]
Step-by-step explanation:
Let number of small containers[tex]=x[/tex]
Let number of large containers[tex]=y[/tex]
Total containers[tex]=x+y[/tex]
Used Containers:
Small containers used[tex]=x\ \ \ (as\ all\ small\ containers\ used)[/tex]
Larger containers used[tex]=\frac{y}{2}\ \ \ \ \ \ (half\ of\ the\ large\ containers\ used)[/tex]
Total containers used[tex]=x+\frac{y}{2}[/tex]
Remaining containers=total containers-used containers
[tex]Remaining\ containers=(x+y)-(x+\frac{y}{2})=\frac{y}{2}\\\\\\\\If\ small\ containers(x)=30\\\\Large\ containers(y)=20\\\\total\ containers(x+y)=30\\\\Remaining\ containers=30-10-\frac{1}{2}\times 20[/tex]