Identify the equation of the circle that has its center at (10, 24) and passes through the origin.
A. (x−10)2+(y−24)2=676
B. (x−10)2+(y−24)2=576
C. (x+10)2+(y+24)2=676
D. (x+10)2+(y+24)2=576

Respuesta :

Answer:

A )  The Equation of the circle (x−10)2+(y−24)2=676

Step-by-step explanation:

step1:-

The equation of the circle whose center is (a,b) and radius r is

[tex](x-a)^{2} +(y-b)^{2} =r^{2}[/tex]

[tex](x-10)^{2}+(y-24)^{2}  =676[/tex]

in this circle equation centre is (g,f) = (10,24)

and formula of radius of a circle is

r = [tex]\sqrt{g^{2}+f^{2} -c }[/tex]

Step2:-

The Equation of the circle (x−10)^2+(y−24)^2=676