Question:
Form a polynomial whose zero and degree are given .zeros: 3,multiplicity 1 ;1,multiplicity 2 ; degree 3 ?
Answer:
The polynomial is [tex]f(x) = (x^3 - 5x^2 -5x +3)[/tex]
Step-by-step explanation:
Given:
Zeros = 3, Multiplicity: 1
Zeros = 1 ,Multiplicity: 2
Degree : 3
To Find:
The polynomial = ?
Solution:
Let f(x) be the required polynomial
Then
[tex]f(x) = (x -3)^1 . (x- 1)^2[/tex]...................(1)
By using[tex](a-b)^2 =a^2 +b^2-2ab[/tex]
Equation(1) becomes
[tex]f(x) = (x -3)^1\cdot(x^2 +1^2-2(1)(x))[/tex]
[tex]f(x) = (x -3) \cdot (x^2 +1-2x)[/tex]
[tex]f(x) = x (x^2 +1-2x) - 3(x^2 +1-2x)[/tex]
[tex]f(x) = (x^3 +x-2x^2) - (3x^2 +3-6x)[/tex]
[tex]f(x) = (x^3 +x-2x^2 - 3x^2 +3-6x)[/tex]
[tex]f(x) = (x^3 - 3x^2-2x^2 +x -6x +3)[/tex]
[tex]f(x) = (x^3 - 5x^2 -5x +3)[/tex]