Respuesta :

Answer:

[tex]sin^4(a)+cos^4(a)=\frac{41}{50}[/tex]

Step-by-step explanation:

we have

[tex]sin^4(a)+cos^4(a)[/tex]

Complete the square

[tex]sin^4(a)+cos^4(a)=(sin^2(a)+cos^2(a))^2-2sin^2(a)cos^2(a)[/tex]

Remember that

[tex]sin^2(a)+cos^2(a)=1[/tex]

so

[tex]sin^4(a)+cos^4(a)=1-2sin^2(a)cos^2(a)[/tex]

Rewrite

[tex]sin^4(a)+cos^4(a)=1-2(sin(a)cos(a))^2[/tex]

we know that

[tex]sin(2a)=2sin(a)cos(a)\\\\\frac{1}{2}sin(2a)=sin(a)cos(a)[/tex]

In this problem we have

[tex]sin(2a)=\frac{3}{5}[/tex]

so

[tex]\frac{1}{2}sin(2a)=\frac{1}{2}(\frac{3}{5})=\frac{3}{10}[/tex]

[tex]sin(a)cos(a)=\frac{3}{10}[/tex]

substitute

[tex]sin^4(a)+cos^4(a)=1-2(sin(a)cos(a))^2[/tex]

[tex]sin^4(a)+cos^4(a)=1-2(\frac{3}{10})^2[/tex]

[tex]sin^4(a)+cos^4(a)=1-\frac{18}{100}[/tex]

[tex]sin^4(a)+cos^4(a)=\frac{82}{100}[/tex]

simplify

[tex]sin^4(a)+cos^4(a)=\frac{41}{50}[/tex]

ACCESS MORE