Respuesta :

Space

Answer:

False

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integral Notation

Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

U-Substitution

Explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^3_2 {\frac{1}{3x - 2}} \, dx \stackrel{?}{=} \int\limits^7_4 {\frac{1}{u}} \, du[/tex]

Step 2: Verify Pt. 1

Identify variables for u-substitution.

  1. Set u:                                                                                                             [tex]\displaystyle u = 3x - 2[/tex]
  2. [u] Differentiate [Derivative Properties]:                                                       [tex]\displaystyle du = 3 \ dx[/tex]
  3. [Limits] Switch:                                                                                               [tex]\displaystyle \left \{ {{x = 3 ,\ u = 3(3) - 2 = 7} \atop {x = 2 ,\ u = 3(2) - 2 = 4}} \right.[/tex]

Step 3: Verify Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 [tex]\displaystyle \int\limits^3_2 {\frac{1}{3x - 2}} \, dx = \frac{1}{3} \int\limits^3_2 {\frac{3}{3x - 2}} \, dx[/tex]
  2. [Integral] U-Substitution:                                                                               [tex]\displaystyle \int\limits^3_2 {\frac{1}{3x - 2}} \, dx = \frac{1}{3} \int\limits^7_4 {\frac{1}{u}} \, du[/tex]
  3. Compare:                                                                                                       [tex]\displaystyle \int\limits^3_2 {\frac{1}{3x - 2}} \, dx = \frac{1}{3} \int\limits^7_4 {\frac{1}{u}} \, du \neq \int\limits^7_4 {\frac{1}{u}} \, du[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

ACCESS MORE