Respuesta :
Answer:
[tex]A=181.0\ units^2[/tex]
Step-by-step explanation:
step 1
Find the length side c
Applying the law of sines
[tex]\frac{a}{sin(A)}=\frac{c}{sin(C)}[/tex]
substitute he given values
[tex]\frac{19.2}{sin(53.8^o)}=\frac{c}{sin(65.4^o)}[/tex]
solve for c
[tex]c=\frac{19.2}{sin(53.8^o)}sin(65.4^o)\\\\c=21.6\ units[/tex]
step 2
Find the measure of angle B
Remember that the sum of the interior angles in any triangle must be equal to 180 degrees
so
[tex]A+B+C=180^o[/tex]
substitute the given values
[tex]53.8^o+B+65.4^o=180^o\\B=180^o-119.2^o\\B=60.8^o[/tex]
step 3
Find the area of the triangle
we know that
The area of the triangle applying the law of sines is equal to
[tex]A=\frac{1}{2}(a)(c)sin(B)[/tex]
substitute the given vales
[tex]A=\frac{1}{2}(19.2)(21.6)sin(60.8^o)\\\\A=181.0\ units^2[/tex]
Answer:
181.3 units^2
Step-by-step explanation:
Just did it on E2020
I used the law of sines to find the c side then I used the equation A=.5*19.2*21.6*sin(60.8)