Respuesta :

Answer:

1.

[tex]^8C_4=\frac{2 \times 7 \times 5}{1 } = 70[/tex]

2.

[tex]^7P_4 = 210[/tex]

Step-by-step explanation:

1. We want to evaluate

[tex]^8C_4[/tex]

Recall that:

[tex]^nC_r= \frac{n!}{(n - r)!r ! } [/tex]

[tex]^8C_4= \frac{8!}{(8- 4)!4! } [/tex]

[tex]^8C_4=\frac{8!}{4!4! } [/tex]

[tex]^8C_4=\frac{8 \times 7 \times 6 \times 5 \times 4!}{4!4! } [/tex]

[tex]^8C_4=\frac{8 \times 7 \times 6 \times 5 \times 4!}{4\times 3 \times 2 \times 1 \times 4! } [/tex]

[tex]^8C_4=\frac{8 \times 7 \times 6 \times 5 }{4\times 3 \times 2 \times 1} [/tex]

[tex]^8C_4=\frac{2 \times 7 \times 5}{1 } = 70[/tex]

2. We want to evaluate

[tex]^7P_4[/tex]

[tex]^nP_r = \frac{n!}{(n - r)!} [/tex]

[tex]^7P_4 = \frac{7!}{(7 - 4)!} [/tex]

[tex]^7P_4 = \frac{7!}{3!} [/tex]

[tex]^7P_4 = \frac{7 \times 6 \times 5 \times 4\times 3!}{3!} [/tex]

[tex]^7P_4 = \frac{7 \times 6 \times 5\times 4 }{1} = 840[/tex]