Respuesta :

Answer:

Explanation:

Calculate the distance between origin O [tex]\left( {0\;{\rm{cm,}}\;0\;{\rm{cm}}} \right)[/tex] and the point [tex]\left( { - 5.0\;{\rm{cm,}}\;5.0\;{\rm{cm}}} \right)[/tex] as follows:

Substitute 0 cm for [tex]{x_1} ,0cm[/tex] for [tex]{y_1} , - 5.0\;{\rm{cm}}[/tex] for [tex]{x_2}[/tex] , and [tex]5.0\;{\rm{cm}}[/tex] for [tex]{y_2}[/tex]  in [tex]r = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}[/tex]

[tex]\begin{array}{c}\\r = \sqrt {{{\left( { - 5.0\;{\rm{cm}}\; - 0\;{\rm{cm}}} \right)}^2} + {{\left( {5.0\;{\rm{cm}}\; - 0\;{\rm{cm}}} \right)}^2}} \\\\ = 5\sqrt 2 \;{\rm{cm}}\\\end{array} [/tex]

The electric field is,

[tex]E = k\frac{q}{{{r^2}}}[/tex]

Substitute [tex]9 \times {10^9}\;{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}[/tex] for k, 10 nC for q, and [tex]5\sqrt 2 \;{\rm{cm}}[/tex] for r in [tex]E = k\frac{q}{{{r^2}}}[/tex]

[tex]\begin{array}{c}\\E = \frac{{\left( {9 \times {{10}^9}} \right)\left( {10\;{\rm{nC}}} \right)}}{{{{\left( {5\sqrt 2 \;{\rm{cm}}} \right)}^2}}}\\\\ = \frac{{\left( {9 \times {{10}^9}\;{\rm{N}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\left( {10\;{\rm{nC}}} \right)\left( {\frac{{{{10}^{ - 9}}{\rm{C}}}}{{1\;{\rm{nC}}}}} \right)}}{{{{\left( {\left( {5\sqrt 2 \;{\rm{cm}}} \right)\left( {\frac{{{{10}^{ - 2}}\;{\rm{m}}}}{{1\;{\rm{cm}}}}} \right)} \right)}^2}}}\\\\ = 1.8 \times {10^4}\;{\rm{N/C}}\\\end{array} [/tex]

 

Therefore, the electric field at the position [tex]\left( { - 5.0\;{\rm{cm,}}\;5.0\;{\rm{cm}}} \right)[/tex] is [tex]1.8 \times {10^4}\;{\rm{N/C}}[/tex]

The electric field is inversely proportional to the square of the distance r.

The electric field in vector form is,

[tex]\vec E = {\vec E_{2x}}i + {\vec E_{2y}}j [/tex]

Here, [tex]{\vec E_{2x}} [/tex] is the x component of electric field vector, and [tex]{\vec E_{2y}} [/tex] is the y component of electric field vector.

The x component of electric field vector is [tex]- E\cos \theta[/tex], and the y component of electric field vector is [tex]E\sin \theta[/tex].

Substitute [tex]- E\cos \theta[/tex] for [tex]{\vec E_{2x}} [/tex], and [tex]E\sin \theta[/tex] for [tex]{\vec E_{2y}}[/tex] in [tex]\vec E = {\vec E_{2x}}i + {\vec E_{2y}}j [/tex]

[tex]\begin{array}{c}\\\vec E = \left( { - E\cos \theta } \right)i + \left( {E\sin \theta } \right)j\\\\ = \left( E \right)\left( {\left( { - \cos \theta } \right)i + \left( {\sin \theta } \right)j} \right)\\\end{array} [/tex]

Substitute [tex]1.8 \times {10^4}\;{\rm{N/C}}[/tex] for E, and 450 for [tex]\thetaθ[/tex] in [tex]\vec E = \left( E \right)\left( {\left( { - \cos \theta } \right)i + \left( {\sin \theta } \right)j} \right)[/tex]  

[tex]\begin{array}{c}\\\vec E = \left( {1.8 \times {{10}^4}\;{\rm{N/C}}} \right)\left( { - \cos 45i + \sin 45j} \right)\\\\ = - \left( {1.27\;{\rm{N/C}}} \right)i + \left( {1.27\;{\rm{N/C}}} \right)j\\\end{array} [/tex]

Therefore, the electric field vector in component form is,

[tex]\left( {{{\vec E}_{2x}},{{\vec E}_{2y}}} \right) = \left( { - 1.27\;{\rm{N/C}},\,1.27\;{\rm{N/C}}} \right){\rm{N/C}}[/tex]

The point [tex]\left( { - 5.0\;{\rm{cm,}}\;5.0\;{\rm{cm}}} \right)[/tex] lies in the second quadrant, so the x component of electric field vector is negative, and y component of the electric field vector is positive

ACCESS MORE

Otras preguntas