Two bullets have masses of 3.0 g and 6.0 g respectively. Both are fired with a speed of 40.0 m/s.(a) Which bullet has more kinetic energy? (b) what is the ratio of their kinetic energies?

Respuesta :

Answer:

(a) The bullet with a mass of 6.0 g

(b) [tex]\frac{K_2}{K_1}=2[/tex]

Explanation:

(a) Kinetic energy is defined as:

[tex]K=\frac{mv^2}{2}[/tex]

So, we have:

[tex]K_1=\frac{3*10^{-3}kg(40\frac{m}{s})^2}{2}\\K_1=2.4J[/tex]

[tex]K_2=\frac{6*10^{-3}kg(40\frac{m}{s})^2}{2}\\K_2=4.8J[/tex]

The bullet with a mass of 6.0 g have more kinetic energy

(b) We have [tex]m_2=2m_1(1)[/tex] and [tex]v_1=v_2(2)[/tex]. So:

[tex]K_1=\frac{m_1v_1^2}{2}\\K_2=\frac{m_2v_2^2}{2}\\\frac{K_2}{K_1}=\frac{\frac{m_2v_2^2}{2}}{\frac{m_1v_1^2}{2}}(3)[/tex]

Replacing (1) and (2) in (3):

[tex]\frac{K_2}{K_1}=\frac{\frac{2m_1v_1^2}{2}}{\frac{m_1v_1^2}{2}}\\\frac{K_2}{K_1}=2[/tex]

[tex]m_2(6 \ g)[/tex] bullet has more K.E and the ration will be "[tex]K_2 = 2K_1[/tex]".

Given:

Mass,

  • [tex]m_1 = 3 \ g[/tex]
  • [tex]m_2 = 6 \ g[/tex]

Speed,

  • [tex]v = 40 \ m/s[/tex]

The Kinetic energy will be:

→ [tex]K_1 = \frac{1}{2} m_1 v^2[/tex]

        [tex]= \frac{1}{2}\times 3\times (40)^2[/tex]

        [tex]= 2400 \ J[/tex]

and,

→ [tex]K_2 = \frac{1}{2} m_2 v^2[/tex]

        [tex]= \frac{1}{2}\times 6\times (40)^2[/tex]

        [tex]= 4800 \ J[/tex]

We can see that "[tex]m_2[/tex]" is more than "[tex]m_1[/tex]".

hence,

The ratio will be:

→ [tex]\frac{K_2}{K_1} = \frac{4800}{2400}[/tex]

        [tex]= 2[/tex]

  [tex]K_2 = 2 K_1[/tex]

Thus the above approach is right.

Learn more:

https://brainly.com/question/3308944

ACCESS MORE