Respuesta :
Answer:
(a) The bullet with a mass of 6.0 g
(b) [tex]\frac{K_2}{K_1}=2[/tex]
Explanation:
(a) Kinetic energy is defined as:
[tex]K=\frac{mv^2}{2}[/tex]
So, we have:
[tex]K_1=\frac{3*10^{-3}kg(40\frac{m}{s})^2}{2}\\K_1=2.4J[/tex]
[tex]K_2=\frac{6*10^{-3}kg(40\frac{m}{s})^2}{2}\\K_2=4.8J[/tex]
The bullet with a mass of 6.0 g have more kinetic energy
(b) We have [tex]m_2=2m_1(1)[/tex] and [tex]v_1=v_2(2)[/tex]. So:
[tex]K_1=\frac{m_1v_1^2}{2}\\K_2=\frac{m_2v_2^2}{2}\\\frac{K_2}{K_1}=\frac{\frac{m_2v_2^2}{2}}{\frac{m_1v_1^2}{2}}(3)[/tex]
Replacing (1) and (2) in (3):
[tex]\frac{K_2}{K_1}=\frac{\frac{2m_1v_1^2}{2}}{\frac{m_1v_1^2}{2}}\\\frac{K_2}{K_1}=2[/tex]
[tex]m_2(6 \ g)[/tex] bullet has more K.E and the ration will be "[tex]K_2 = 2K_1[/tex]".
Given:
Mass,
- [tex]m_1 = 3 \ g[/tex]
- [tex]m_2 = 6 \ g[/tex]
Speed,
- [tex]v = 40 \ m/s[/tex]
The Kinetic energy will be:
→ [tex]K_1 = \frac{1}{2} m_1 v^2[/tex]
[tex]= \frac{1}{2}\times 3\times (40)^2[/tex]
[tex]= 2400 \ J[/tex]
and,
→ [tex]K_2 = \frac{1}{2} m_2 v^2[/tex]
[tex]= \frac{1}{2}\times 6\times (40)^2[/tex]
[tex]= 4800 \ J[/tex]
We can see that "[tex]m_2[/tex]" is more than "[tex]m_1[/tex]".
hence,
The ratio will be:
→ [tex]\frac{K_2}{K_1} = \frac{4800}{2400}[/tex]
[tex]= 2[/tex]
[tex]K_2 = 2 K_1[/tex]
Thus the above approach is right.
Learn more:
https://brainly.com/question/3308944