The restrictions on the variable in the division x+5/x+2 divided by x-3/x+1 are

Answer:
[tex]x \neq-2 \text { and } x \neq-1[/tex]
Step-by-step explanation:
The restricted value is a value that makes the denominator of a function equal to zero. Thus, solving these function results in an undefined solution.
Thus,[tex]x \neq-2[/tex] and [tex]x \neq-1[/tex] are the restricted values for [tex]\frac{x+5}{x+2}[/tex] divided by [tex]\frac{x-3}{x+1}[/tex]
Because, substituting[tex]x=-2[/tex] in [tex]\frac{x+5}{x+2}[/tex]
Now, substituting [tex]x=-2[/tex], we get,
[tex]\begin{aligned}\frac{x+5}{x+2} &=\frac{x+5}{-2+2} \\&=\frac{x+5}{0}\end{aligned}[/tex]
Thus, results the solution undefined.
Also, substituting [tex]x=-1[/tex] in [tex]\frac{x-3}{x+1}[/tex]
[tex]\begin{aligned}\frac{x-3}{x+1} &=\frac{x-3}{-1+1} \\&=\frac{x-3}{0}\end{aligned}[/tex]
Thus results the solution undefined.
Hence, the restricted values are [tex]x \neq-2 \text { and } x \neq-1[/tex]