Answer:
[tex]4\ discs[/tex]
Step-by-step explanation:
Let number of compact disc of [tex]\$11.50=x[/tex]
Number of compact disc of [tex]\$ 7.50=y[/tex]
Total discs[tex]=x+y[/tex]
[tex]x+y=12\ \ \ ..............(1)[/tex]
[tex]Cost\ of\ discs\ of\ \$11.50=11.50\times number\ of\ discs=11.50\times x=11.50x\\\\Cost\ of\ discs\ of\ \$7.50=7.50\times number\ of\ discs=7.50\times y=7.50y[/tex]
[tex]Total\ cost=11.50x+7.50y\\\\11.50x+7.50y=106\ \ ............(2)[/tex]
[tex]Solve\ x+y=12\\\\11.50x+7.50y=106[/tex]
[tex]Equation(2)-7.50\times Equation(1)\\\\11.50x-7.50x+7.50y-7.50y=106-7.50\times 12\\\\4x=106-90\\\\4x=16\\\\x=4[/tex]
Number of compact discs having cost [tex]\$11.50=4[/tex]