Answer:
117.6 m/s, 235.2 m
940.08073 m
135.81 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
g = Acceleration due to gravity = 9.81 m/s² = a
[tex]v=u+at\\\Rightarrow v=0+29.4\times 4\\\Rightarrow v=117.6\ m/s[/tex]
The velocity at the end of 4 seconds is 117.6 m/s
[tex]s=ut+\dfrac{1}{2}at^2\\\Rightarrow s=0\times t+\dfrac{1}{2}\times 29.4\times 4^2\\\Rightarrow s=235.2\ m[/tex]
Position at the end of 4 seconds is 235.2 m above the ground
[tex]v^2-u^2=2as\\\Rightarrow s=\dfrac{v^2-u^2}{2a}\\\Rightarrow s=\dfrac{0^2-117.6^2}{2\times -9.81}\\\Rightarrow s=704.88073\ m[/tex]
Maximum height of the rocket is 704.88073+235.2 = 940.08073 m
[tex]v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 9.81\times 940.08073+0^2}\\\Rightarrow v=135.81\ m/s[/tex]
Velocity of the rocket as it crashes is 135.81 m/s