Respuesta :

Answer:

Option 3: y ≥ 3x + 4

Step-by-step explanation:

The shade area represents the solution of an inequality

We should know the following:

The shaded area over a solid line if the the sign is ≥

The shaded area below a solid line if the the sign is ≤

The shaded area over a dashed line if the the sign is >

The shaded area below a dashed line if the the sign is <

For the given inequality:

the equation of the line 3x+4 and applying the previous rules

So, y ≥ 3x + 4

Answer:

The correct answer is C. y ≥ 3x -4

Step-by-step explanation:

Let's observe the values for x, y, and 3x - 4 in the graph this way:

x             3x-4                 y

-4          -8                  Above the line and in the shaded area

-3          -5                  Above the line and in the shaded area

-2           -2                 Above the line and in the shaded area

-1            1                   Above the line and in the shaded area

0            4                  Above the line and in the shaded area

1             7                   Above the line and in the shaded area

2            10                  Above the line and in the shaded area

3            13                  Above the line and in the shaded area

4            16                  Above the line and in the shaded area

Then we can conclude that y ≥ 3x -4 because for any given value of x, y is always above the line and in the shaded area.

ACCESS MORE