Answer:
0.90291 m/s
0.45055 m/s
Explanation:
[tex]m_1[/tex] = Mass of canon = 2090 kg
[tex]m_2[/tex] = Mass of ball = 16.7 kg
[tex]v_1[/tex] = Velocity of canon
[tex]v_2[/tex] = Velocity of ball = 113 m/s
In this system the momentum is conserved
[tex]m_1v_1=m_2v_2\\\Rightarrow v_1=\dfrac{16.7\times 113}{2090}\\\Rightarrow v_1=0.90291\ m/s[/tex]
The velocity of the cannon is 0.90291 m/s
Applying energy conservation
[tex]\dfrac{1}{2}m_1v_1^2+\dfrac{1}{2}m_2v_2^2=\dfrac{1}{2}m_2v^2\\\Rightarrow m_1v_1^2+m_2v_2^2=m_2v^2\\\Rightarrow v_2=\sqrt{\dfrac{m_1v_1^2+m_2v_2^2}{m_2}}\\\Rightarrow v_2=\sqrt{\dfrac{2090\times 0.90291^2+16.7\times 113^2}{16.7}}\\\Rightarrow v_2=113.45055\ m/s[/tex]
The ball would travel 113.45055-113 = 0.45055 m/s faster