Several terms of a sequence {an}n=1 infinity are given. A. Find the next two terms of the sequence. B. Find a recurrence relation that generates the sequence. C. Find an explicit formula for the general nth term of the sequence.

Respuesta :

Answer:

A)[tex]\frac{1}{1024},\frac{1}{4096}[/tex]

B) [tex]\left\{\begin{matrix}a(1)=1 & \\ a(n)=a(n-1)*\frac{1}{4} &\:for\:n=1,2,3,4,... \end{matrix}\right.[/tex]

C) [tex]\\a_{n}=nq^{n-1} \:for\:n=1,2,3,4,...[/tex]

Step-by-step explanation:

1) Incomplete question. So completing the several terms:[tex]\left \{a_{n}\right \}_{n=1}^{\infty}=\left \{ 1,\frac{1}{4},\frac{1}{16},\frac{1}{64},\frac{1}{256},... \right \}[/tex]

We can realize this a Geometric sequence, with the ratio equal to:

[tex]q=\frac{1}{4}[/tex]

A) To find the next two terms of this sequence, simply follow multiplying the 5th term by the ratio (q):

[tex]\frac{1}{256}*\mathbf{\frac{1}{4}}=\frac{1}{1024}\\\\\frac{1}{1024}*\mathbf{\frac{1}{4}}=\frac{1}{4096}\\\\\left \{ 1,\frac{1}{4},\frac{1}{16},\frac{1}{64},\frac{1}{256},\mathbf{\frac{1}{1024},\frac{1}{4096}}\right \}[/tex]

B) To find a recurrence a relation, is to write it a function based on the last value. So that, the function relates to the last value.

[tex]\left\{\begin{matrix}a(1)=1 & \\ a(n)=a(n-1)*\frac{1}{4} &\:for\:n=1,2,3,4,... \end{matrix}\right.[/tex]

C) The explicit formula, is one valid for any value since we have the first one to find any term of the Geometric Sequence, therefore:

[tex]\\a_{n}=nq^{n-1} \:for\:n=1,2,3,4,...[/tex]

ACCESS MORE