Respuesta :
Answer:
[tex]3.31777\times 10^{-5}\ m/s^2[/tex]
[tex]0.00612273\ m/s^2[/tex]
[tex]\dfrac{g_{me}}{g_{es}}=0.00541[/tex]
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
[tex]M_m[/tex] = Mass of Moon = [tex]7.35\times 10^{22}\ kg[/tex]
[tex]M_s[/tex] = Mass of Sun = [tex]1.989\times 10^{30}\ kg[/tex]
[tex]r_{me}[/tex] = Distance between Moon and Earth = [tex]384.4\times 10^6\ m[/tex]
[tex]r_{es}[/tex] = Distance between Sun and Earth = [tex]147.2\times 10^9\ m[/tex]
Acceleration due to gravity is given by
[tex]g_{me}=\dfrac{GM_m}{r_{me}^2}\\\Rightarrow g_{me}=\dfrac{6.67\times 10^{-11}\times 7.35\times 10^{22}}{(384.4\times 10^6)^2}\\\Rightarrow g_{me}=3.31777\times 10^{-5}\ m/s^2[/tex]
The magnitude of the acceleration due to gravity on the surface of Earth due to the Moon is [tex]3.31777\times 10^{-5}\ m/s^2[/tex]
[tex]g_{es}=\dfrac{GM_s}{r_{es}^2}\\\Rightarrow g_{es}=\dfrac{6.67\times 10^{-11}\times 1.989\times 10^{30}}{(147.2\times 10^{9})^2}\\\Rightarrow g_{es}=0.00612273\ m\s^2[/tex]
The magnitude of the acceleration due to gravity at Earth due to the Sun is [tex]0.00612273\ m/s^2[/tex]
Dividing the equations we get
[tex]\dfrac{g_{me}}{g_{es}}=\dfrac{\dfrac{6.67\times 10^{-11}\times 7.35\times 10^{22}}{(384.4\times 10^6)^2}}{\dfrac{6.67\times 10^{-11}\times 1.989\times 10^{30}}{(147.2\times 10^{9})^2}}\\\Rightarrow \dfrac{g_{me}}{g_{es}}=0.00541\\\Rightarrow g_{es}=184.54g_{me}[/tex]
The acceleration due to gravity by the Sun is 184.54 times the acceleration of the Moon.
The Moon is still responsible for the tides because of there being a difference in the gravity exerted on Earth's near and far side.