Sandra knows the Pythagorean identity sin 2 ⁡ θ + cos 2 ⁡ θ = 1 . If she is told that 0 ≤ θ ≤ π 2 and cos ⁡ θ = 5 12, what will she get when she correctly calculates tan ⁡ θ ?

Respuesta :

Answer:

[tex]\text{tan}(\theta)=\frac{\sqrt{119}}{5}[/tex]

Step-by-step explanation:

We have been given that Sandra knows the Pythagorean identity [tex]\text{sin}^2(\theta)+\text{cos}^2(\theta)=1[/tex]. She is told that [tex]0\leq \theta\leq \frac{\pi}{2}[/tex] and [tex]\text{cos}(\theta)=\frac{5}{12}[/tex].

First of all, we will find value of sine theta using the given identity.

[tex]\text{sin}^2(\theta)+\text{cos}^2(\theta)=1[/tex]

[tex]\text{sin}^2(\theta)+(\frac{5}{12})^2=1[/tex]

[tex]\text{sin}^2(\theta)+\frac{25}{144}=1[/tex]

[tex]\text{sin}^2(\theta)+\frac{25}{144}-\frac{25}{144}=1-\frac{25}{144}[/tex]

[tex]\text{sin}^2(\theta)=\frac{144-25}{144}[/tex]

[tex]\text{sin}^2(\theta)=\frac{119}{144}[/tex]

[tex]\text{sin}(\theta)=\sqrt{\frac{119}{144}}[/tex]

[tex]\text{sin}(\theta)=\frac{\sqrt{119}}{12}[/tex]  

[tex]\text{tan}(\theta)=\frac{\text{sin}(\theta)}{\text{cos}(\theta)}[/tex]

[tex]\text{tan}(\theta)=\frac{\frac{\sqrt{119}}{12}}{\frac{5}{12}}[/tex]

[tex]\text{tan}(\theta)=\frac{\sqrt{119}*12}{5*12}=\frac{\sqrt{119}}{5}[/tex]

Therefore, [tex]\text{tan}(\theta)=\frac{\sqrt{119}}{5}[/tex].

ACCESS MORE