Answer:
The tension in the string at the top = [tex]71 N[/tex]
The tension in the string at the top = [tex]1.1 \times 10^{-2} N[/tex]
Explanation:
a) at the top
[tex]F_{cent} = F_g +F_T[/tex] ----------------------(1)
Where,
[tex]F_{cent}[/tex] is the centripetal force
[tex]F_g[/tex] is the gravitational force
[tex]F_T[/tex] force due to tension
From (1)
[tex]F_T = F_{cent} - F_g[/tex]
[tex]F_T = \frac{ 4\pi^2 Rm}{T^2} -mg[/tex]
where
R is the radius
m is the mass
T is the time taken for one revolution
g is the acceleration due to gravity
On Substituting the values
[tex]F_T = \frac{4 (3.14)^2 (1.0)}{(0.97)^2} -(2.2 \times9.8)[/tex]
[tex]F_T[/tex]= 70.7259N
[tex]F_T[/tex] =71N
b) at the bottom
On Substituting the values
[tex]F_{cent} = -F_g +F_T[/tex]
[tex]F_T = F_{cent}- F_g[/tex]
[tex]F_T = \frac{ \pi^2 Rm}{T^2} +mg[/tex]
[tex]F_T = \frac{4 (3.14)^2 (1.0)}{(0.97)^2} +(2.2 \times9.8)[/tex]
[tex]F_T = 113.8899N[/tex]
[tex]F_T = 1.1 \times 10^{-2}[/tex]