Answer:
Step-by-step explanation:
Given that ||v|| = 2 and ||w|| = 3, and the angle between v and w is 120 degrees
We know by definition of dot product and properties that
[tex]a.b = ||a||||b||cos t[/tex] where t is the angle between them
Using this we find
(a) v·w =[tex]2(3) cos 120\\=-3[/tex]
(b) ∥2v+w∥
[tex](2v+w).(2v+w) = 4 v.v +4 w.v +w.w= 4(2)^2+4(-3)+9 =13[/tex]
[tex]||2v+w||^2 =13\\||2v+w||=\sqrt{13}[/tex]
(c) ∥2v−3w∥
[tex](2v-3w).(2v-3w) = 4 v.v -12 w.v +9w.w= 4(2)^2-12(-3)+9(9) =133[/tex]
[tex]||2v-3w||^2 =133\\||2v-3w||=\sqrt{133}[/tex]