Respuesta :

Answer:

[tex]V =\frac{\sqrt{3}}{12}[/tex]

Step-by-step explanation:

Diagram relating to the given vertices is attached below

height of equilateral triangle is given as

h = s sin60

[tex]h = \frac{\sqrt{3}}{2} s[/tex]

area of triangle is given as

[tex]A = \frac{1}{2} sh[/tex]

[tex]A = \frac{1}{2} s\times \frac{\sqrt{3}}{2} s[/tex]

[tex]A = \frac{\sqrt{3}}{4} s^2[/tex]

equation for line of given figure below that representing  diagonal is given as

y = -x + 1

integrate the from 0 to 1 we will have volume value

[tex]V = \int_{0}^{1} \frac{\sqrt{3}}{4} s^2 dy[/tex]

[tex]V = \int_{0}^{1} \frac{\sqrt{3}}{4} (-y+1)^2 dy[/tex]

[tex]v = \frac{\sqrt{3}}{4} \int_{0}^{1} (-y+1)^2 dy[/tex]

   [tex]=\frac{\sqrt{3}}{4} \int_{0}^{1} (y^2-2y+1)^2 dy[/tex]

  [tex] =\frac{3}{4}[\frac{1}{3}y^3 -y^3 + y]_0^1[/tex]

[tex]V =\frac{\sqrt{3}}{12}[/tex]

ACCESS MORE