Answer:
[tex]V =\frac{\sqrt{3}}{12}[/tex]
Step-by-step explanation:
Diagram relating to the given vertices is attached below
height of equilateral triangle is given as
h = s sin60
[tex]h = \frac{\sqrt{3}}{2} s[/tex]
area of triangle is given as
[tex]A = \frac{1}{2} sh[/tex]
[tex]A = \frac{1}{2} s\times \frac{\sqrt{3}}{2} s[/tex]
[tex]A = \frac{\sqrt{3}}{4} s^2[/tex]
equation for line of given figure below that representing diagonal is given as
y = -x + 1
integrate the from 0 to 1 we will have volume value
[tex]V = \int_{0}^{1} \frac{\sqrt{3}}{4} s^2 dy[/tex]
[tex]V = \int_{0}^{1} \frac{\sqrt{3}}{4} (-y+1)^2 dy[/tex]
[tex]v = \frac{\sqrt{3}}{4} \int_{0}^{1} (-y+1)^2 dy[/tex]
[tex]=\frac{\sqrt{3}}{4} \int_{0}^{1} (y^2-2y+1)^2 dy[/tex]
[tex] =\frac{3}{4}[\frac{1}{3}y^3 -y^3 + y]_0^1[/tex]
[tex]V =\frac{\sqrt{3}}{12}[/tex]