Answer:
11a) 2
11b) y=2x-3
11c) a = 7, b = 7
11d) y = -1
Step-by-step explanation:
11a) The line passes through the points (3,3) and (8,13), then its slope is
[tex]\dfrac{13-3}{8-3}=\dfrac{10}{5}=2[/tex]
11b) The equation of the line is
[tex]y-3=2(x-3)\\ \\y-3=2x-6\\ \\y=2x-6+3\\ \\y=2x-3[/tex]
11c) If point (5,a) lies on the line, then its coordinates satisfy the equation:
[tex]a=2\cdot 5-3\\ \\a=10-3\\ \\a=7[/tex]
If point (b,11) lies on the line, then its coordinates satisfy the equation:
[tex]11=2b-3\\ \\11+3=2b-3+3\\ \\14=2b\\ \\2b=14\\ \\b=7[/tex]
11d) If [tex]x=1[/tex], then
[tex]y=2\cdot 1-3\\ \\y=2-3\\ \\y=-1[/tex]