Answer:
6.7
Step-by-step explanation:
The given data set is
2, 6, 15, 9, 11, 22, 1, 4, 8, 19
We need to find the standard devision of the data.
Formula for mean:
[tex]Mean=\dfrac{\text{Sum of observations}}{\text{Number of observations}}[/tex]
[tex]Mean=\dfrac{2+6+15+9+11+22+1+4+8+19}{10}[/tex]
[tex]Mean=\dfrac{97}{10}[/tex]
[tex]Mean=9.7[/tex]
Fomula for standard deviation:
[tex]\text{Standard deviation}=\sqrt{\dfrac{\sum (x-\overline{x})^2}{n}}[/tex]
[tex]\sum (x-\overline{x})^2=(2-9.7)^2+(6-9.7)^2+(15-9.7)^2+(9-9.7)^2+(11-9.7)^2+(22-9.7)^2+(1-9.7)^2+(4-9.7)^2+(8-9.7)^2+(19-9.7)^2=452.1[/tex]
[tex]\text{Standard deviation}=\sqrt{\dfrac{452.1}{10}}[/tex]
[tex]\text{Standard deviation}=\sqrt{45.21}[/tex]
[tex]\text{Standard deviation}=6.72383818961[/tex]
[tex]\text{Standard deviation}\approx 6.7[/tex]
Therefore, the standard deviation is 6.7.