Drag and drop a statement or reason to each box to complete the proof.
Given: PQ¯¯¯¯¯≅PR¯¯¯¯¯
Prove: ∠Q≅∠R



The data observed from the triangle are given below.
Statement Reason
[tex]\overline{P Q} \cong \overline{P R}[/tex] Given
Draw [tex]\overline{P M}[/tex] so that M is the midpoint of QR. Two points determine a line
[tex]\overline{Q M} \cong \overline{R M}[/tex] Definition of midpoint
[tex]\overline{P M} \cong \overline{P M}[/tex] Reflexive property of congruence
[tex]\triangle P Q M \cong \Delta P R M[/tex] SSS congruence postulate
[tex]\angle \mathrm{Q} \cong \angle \mathrm{R}[/tex] CPCTC
SSS means side-side-side
CPCTC means corresponding parts of the congruence triangle are congruent.
Hence the given triangle is SSS congruence postulate