Answer:
73.62 kg
Explanation:
[tex]F_{NET} = F_{a} + F_{f} [/tex]
[tex]F_{NET} = 0[/tex]
Given;
[tex]F_{a} = 505N[/tex]
[tex]0= 505N + F_{f} [/tex]
[tex]F_{f} = -505 N[/tex]
Also
[tex]F_{f} = -\mu*m*g[/tex]
where m is the mass of the box,
g is acceleration due to gravity = 9.8 m/s²
[tex]\mu[/tex] is coefficient of friction = 0.7
-505 = - (m*0.7*9.8)
-505 = -6.86 m
m = 505/6.86
m = 73.62 kg