Respuesta :

frika

Answer:

C

Step-by-step explanation:

If [tex]R_A=3R_B, T_A+T_B=12,[/tex] then

[tex]R_A=3R_B\\ \\T_A=12-T_B[/tex]

Substitute them into the equation [tex]R_AT_A=360:[/tex]

[tex]3R_B\cdot (12-T_B)=360\\ \\36R_B-3R_BT_B=360\\ \\12R_B-R_BT_B=120[/tex]

Given [tex]R_BT_B=60,[/tex] then

[tex]12R_B-60=120\\ \\12R_B=120+60\\ \\12R_B=180\\ \\R_B=15\\ \\15\cdot T_B=60\Rightarrow T_B=\dfrac{60}{15}=4\\ \\T_A=12-T_B=12-4=8\\ \\R_A\cdot 8=360\Rightarrow R_A=\dfrac{360}{8}=45[/tex]

Hence,

[tex]R_A-R_B+T_A-T_B=45-15+8-4=30+4=34[/tex]

ACCESS MORE