Respuesta :
Answer:
[tex]v_f=\dfrac{g}{6}\times t_b\ m/s[/tex]
1.7985 m/s
0.989175 m
5.93505 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²
[tex]v_f=u+at\\\Rightarrow v_f=0+\dfrac{g}{6}\times t_b\\\Rightarrow v_f=\dfrac{g}{6}\times t_b\ m/s[/tex]
The expression is [tex]v_f=\dfrac{g}{6}\times t_b\ m/s[/tex]
[tex]v_f=\dfrac{9.81}{6}\times 1.1\\\Rightarrow v_f=1.7985\ m/s[/tex]
The final velocity is 1.7985 m/s
[tex]s=ut+\dfrac{1}{2}at^2\\\Rightarrow d=0\times t+\dfrac{1}{2}\times \dfrac{9.81}{6}\times 1.1^2\\\Rightarrow d=0.989175\ m[/tex]
The distance dropped from the Moon is 0.989175 m
[tex]s=ut+\dfrac{1}{2}at^2\\\Rightarrow d=0\times t+\dfrac{1}{2}\times 9.81\times 1.1^2\\\Rightarrow s=5.93505\ m[/tex]
The distance dropped from the Earth is 5.93505 m
a). [tex]$v_f=\left(-\frac{g}{6} \right) t$[/tex]
b). [tex]v_f = -1.8 \ m/s[/tex]
c). [tex]$d = 0.989 \ m$[/tex]
d). [tex]d_e=5.93 \ m[/tex]
Given :
Gravitational acceleration on the moon = [tex]$\frac{1}{6}$[/tex] of the gravitational acceleration on earth (g)
Time, [tex]t=1.1[/tex] s
Initial velocity, [tex]u=0[/tex] (since the body is at rest)
To find :
a). expression for final velocity of the ball, [tex]v_f[/tex]
b). Magnitude of final velocity, [tex]v_f[/tex] (in m/s)
c). height, [tex]d[/tex] (in meters) from which the ball was dropped
d). From how high up would the ball needs to be dropped on the earth, [tex]d_e[/tex] (in meters).
Solution :
a). Expression for final velocity of the ball in terms of 'g' and 't'
Using the formula of equation of motion :
[tex]v=u+gt[/tex]
where, [tex]v[/tex] is final velocity
[tex]u[/tex] is initial velocity
[tex]g[/tex] is acceleration due to gravity
[tex]t[/tex] is time
[tex]\therefore \ \ \[/tex] [tex]v=u+gt[/tex]
[tex]$v=0+\left( \frac{-g}{6} \right) \times t$[/tex]
[tex]$v=\left(-\frac{g}{6} \right) t$[/tex]
or [tex]$v_f=v=\left(-\frac{g}{6} \right) t$[/tex]
Therefore, the expression of final velocity of the ball in terms of 'g' and 't' is :
[tex]$v_f=v=\left(-\frac{g}{6} \right) t$[/tex]
b). Magnitude of final velocity, [tex]v_f[/tex]
Using the same formula as above, we get :
[tex]$v_f=\left(-\frac{g}{6} \right) t$[/tex]
[tex]$v_f=\left(-\frac{9.81}{6} \right) \times 1.1$[/tex]
[tex]v_f = -1.8 \ m/s[/tex]
Thus the final velocity is -1.8 m/s
c). Height, [tex]h[/tex] (in meters) from which the ball was dropped
Using the equation of motion
[tex]$S=ut+\frac{1}{2}gt^2$[/tex]
where, [tex]S[/tex] = height
[tex]$\therefore \ \ \ \ S=ut+\frac{1}{2}gt^2$[/tex]
[tex]$S=(0)(1.1)+\frac{1}{2}\times \left(-\frac{9.81}{6} \right) \times (1.1)^2$[/tex]
[tex]$S=0.989 \ m$[/tex] (since, distance is positive only)
or [tex]$d = S=0.989 \ m$[/tex]
Therefore, the ball was dropped from a height of d = 0.989 m.
d). From what height the ball needs to be dropped on earth, [tex]d_e[/tex]
Using the formula of equation of motion :
[tex]$ S=ut+\frac{1}{2}at^2$[/tex]
[tex]$ S=(0)(1.1)+\frac{1}{2}(-9.81)(1.1)^2$[/tex]
[tex]S=5.93 \ m[/tex] (since, distance is positive only)
or [tex]d_e=S=5.93 \ m[/tex]
Thus, the ball should be dropped from a height of [tex]d_e=5.93 \ m[/tex] on earth if it takes the same time to reach the ground as it did on the moon.
Therefore :
a). [tex]$v_f=\left(-\frac{g}{6} \right) t$[/tex]
b). [tex]v_f = -1.8 \ m/s[/tex]
c). [tex]$d = 0.989 \ m$[/tex]
d). [tex]d_e=5.93 \ m[/tex]
Find out more about "object falling from height" here :
https://brainly.com/question/14580488
